
Session 14 

I. Announcements [5 minutes] 
• Homework 6A is due 12/5… next Monday. 
• Assignment 6 has the dual due dates.  Get it in by the 1st to leave plenty of 

time for cramming ☺. 
• Schedule: 

11/28  Assignment 5B is due 
11/29  NLP Lecture 
12/1  NLP Lecture 
12/6  Robotics 
12/8  Philosophy 
12/8 (?) Early turn-in for Assignment 6 
12/12 (?) Final turn-in for Assignment 6 
12/19  FINAL EXAM  

 

II. Review of Reinforcement Learning 
 
Reinforcement Learning (RL) – the task of using observed rewards to learn a 
(approximately) optimal policy for an environment by choosing an action that will 
maximize the expected reward given the current observed state of the agent. 

• Reward (Reinforcement) – feedback that differentiates between good and bad 
outcomes; thus allowing the agent to make choices. 

• Unlike MDPs, RL agents assume no prior knowledge of either the environment or 
the reward function. 

• Three types of agent designs: 
o utility-based agent – learn a utility function for states, which the agent 

will use to select actions in order to maximize expected utility. 
� requires an environment model to map actions to successor states. 

o Q-learning agent – learns a utility function on the state-action pairs; a so-
called Q-function. 

� able to compare actions without knowing their outcomes. 
� without knowing action outcome, look ahead is not possible. 

o reflex agent – learns a policy that maps states to actions. 
 



Passive Reinforcement Learning – the agent’s has a fixed policy π: perform 
action ( )sπ  in state s.  This is similar to policy iteration, but we lack the transition model 

( ), , 'T s a s  and the reward function ( )R s .  Thus, the agent performs a set of trials  and 

uses the observed rewards to estimate the expected utility of each state ( )U sπ .  Starting 

in state s we want to estimate the (discounted) expected reward from future states: 
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• Direct Utility Estimation  – the utility of a state is the expected reward starting 
from that state, so each trial  is a sample for each state visited. 

o In this setting, the problem becomes a supervised learning problem of 
mapping state to value � an inductive learning problem. 

o This Monte-Carlo approach assumes independence of the utility function 
between states.  This ignores the fact that utilities are coupled in the 
Bellman equations!  Thus, this approach does not bootstrap! 

� Without bootstrapping, invaluable information for learning is lost 
and thus the technique converges very slowly. 

• Adaptive Dynamic Programming (ADP) – as the agent moves through the 
environment, the transition model is estimated and the MDP for the corresponding 
model estimate is  solved incrementally using dynamic programming. 

o Learning the environment: 
� The transition model ( ), , 'T s a s  is estimated from the frequency 

from state s to state s’ via action a. 
o The MDP is solved using policy iteration or modified policy iteration. 
o ADP is intractable for large state spaces. 
o approximate ADP – bounds the number of adjustments per transition. 

� prioritizing sweep heuristic – prefers to adjust states whose 
successors have recently had a large utility adjustment. 

• Temporal Difference (TD) Learning – a mixture of sampling and constraint 
bootstrapping in which the values of the observed states are modified to reflect 
the constraints between states given by the MDP. 

o TD equation: given a learning rate α we update the expected utilities: 

( ) ( ) ( ) ( ) ( )( )'U s U s R s U s U sπ π π πα γ← + + −  

The TD equations converges to the MDP equilibrium even though only 
visited states are considered – the frequency of visits to a state are a 
substitute for the explicit transition model. 

o TD is an efficient approximation of ADP: 
� the utility function is updated by local adjustments. 
� TD only adjusts w.r.t. the observed transition and only makes a 

single update per transition. 
 



Active Reinforcement Learning – policy is no longer fixed; active agents must 
decide on actions to take. 

• Exploration 
o greedy agent – follows the current “optimal policy” according to the 

current estimates of the utility of each state. 
� unlikely to converge to the “optimal policy” since neglected states 

have poor estimates of their utility functions. 
o Trade-off between exploration and exploitation 

� exploitation – utilizing current knowledge to perform actions that 
maximize rewards. 

� exploration – trying suboptimal actions with the hope of 
improving our current estimates for the utility function. 

o Greedy in the limit of infinite exploration (GLIE ) – exploration 
schemes that are eventually optimal. 

� simple GLIE scheme – try a random action with probability 1/ t ; 
otherwise, perform the optimal action. 

� optimistic utility estimates that favor unexplored states: 
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• U +  is the optimistic utility function 
• ( ),N a s  is the # of times action a is done in state s. 

• exploration function ( ),f u n  - trade-off between greed and 

curiosity that must increase in u and decrease in n.  e.g. 
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• policy converges quickly while utility estimates converge 
slowly, but all we need is correct policy! 

• Action-Value Function 
o TD-learning can be adapted to the active setting simply by choosing an 

action based on the current U estimate via 1-step look-ahead.  However, 
we still have to learn the environment model to select actions. 

o Q-learning – learns an action-value representation instead of utilities. 
� Q-values:  ( ) ( )max ,

a
U s Q a s=  

� model-free – does not require an environment model for learning 
or action selection. 

� Bellman equations for Q-values: 
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� TD Q-learning: (model-free) 
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• TD doesn’t enforce consistency between values by using 
the model so it learns slower! 



Generalization in Reinforcement Learning – we now consider methods for 
scaling RL to worlds with enormous state spaces.  Standard tabular RL is impractical 
since the table has one entry per state and since most states would be visited rarely. 

• function approximation - representing the value function in (approximate) non-
tabular forms, e.g., a linear combination of features of the state: 

( ) ( ) ( )1 1
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n nU s f s f sθ θ θ= + +…  

o Thus we want to learn the parameters 1, , nθ θ…  to best approximate the 

value function.  Note: features can be non-linear in the state variables. 
o Function approximation allows the agent to broadly generalize between 

many states via states’ common attributes. 
o Unfortunately, the best utility function may be a poor estimate! 
o Online learning updates (Widrow-Hoff  or Delta Rule): uses derivatives 

of squared error to update parameters. 
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o These updates converge to the optimal estimate for linear functions, but 
can wildly diverge for non-linear ones. 

• Function approximation can also be used to estimate the environment model: 
o in observable models, this is a supervised task. 

• in partially-observable models, DBNs with latent variables can be used 
 



III. Supervised Learning1 
 
Linear pattern  – A pattern drawn from a set of patterns based on a linear function class. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Support Vector Machines 
 
The Maximal Margin Classifier – based on the intuition that members of both class 
should be as far from the classification boundary as possible in order to decrease the 
probability that unseen examples will be misclassified.  Thus, for a desired margin γ we 
want a margin ( ) ( )
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(linearly) separable – a characteristic of a set of points indicating that the classes of data 
in the set can be separated by a hyperplane of margin γ > 0.  Thus, there exists a w and b 

such that, for the function ( ) ( ),g bφ= +x w x , the error ( )( ) 0i i iy gξ γ
+

= − =x  for all i. 

 
consistent – a classifier that classifies all of its training set correctly. 
 

Hard Margin SVM – this formulation of the SVM assumes that 
2

1=w .  Thus, 

( )i iy g x  determines how far the image of point ix  is from the hyperplane.  In this form, 

we want to maximize this margin with the constraint that all points must have a margin at 
least γ .  However, by forcing this constraint, our solution is sensitive to a single outlier. 
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1 Notes based from books outside this class – “Kernel Methods for Pattern Analysis” by John Shawe-
Taylor and Nello Christianini and “An Introduction to Probabilistic Graphical Models” by Michael Jordan. 
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Dual:  
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Optimal Parameters: ( )* *Wγ = − α    
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KKT conditions : { } ( )( )* * * *1, , , 0i i ii l y bα φ γ ∀ ∈ + − = w x…  

• This implies that either * 0iα =  or ( )( )* * *,i iy bφ γ+ =w x .   

• Hence only vectors with a geometric margin of *γ  (lie closest to the 

hyperplane) have * 0iα >  � support vectors. 

 

Decision Function: ( ) ( )* *
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Convexity 
A common theme in kernel methods revolves around the fact that our kernel is positive 
semidefinite � creating PSD kernel matrices for all training sets. 

• PSD matrices lead to convexity in a number of (quadratic) optimizations of this 
chapter – these problems have desirable properties. 

o Solving a quadratic programming problem with PSD objective matrix 
leads to global optima – a unique solution. 

o Solutions to the quadratic programming can be found efficiently ( ( )3O ℓ  

with the naïve methods but near linear with specialized approaches). 
 
Duality Gap – when the primal is a minimization, the primal objective is always 
greater than or equal to the dual objective. 

• Our problem satisfies Strong Duality, meaning that at the solution, there is no gap 
between the primal and dual objective. 

• Thus, we can use the duality gap as a measure of convergence:
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Linear Regression and the LMS algorithm 
• This chapter focuses on the linearity assumption.  In particular it is assumed that 

each data point imposes a linear constraint on the parameters. 
• Convergence of the constraint satisfaction algorithm appeals to geometric notions. 
• How data points are presented to the learner: 

o batch setting – data are available as a block. 
� ideal for situations where we are only interested in the estimate. 
� batch analysis often is easier than on-line. 

o on-line setting – data arrive sequentially. 
� ideal for situations where learner must respond in real-time. 
� Sweeps of iterative batch algorithms can be analyzed as on-line 

algorithms. 
 
Least Mean Squares (LMS) algorithm – assumes linear dependence of one variable 
on another; namely ,n n ny xθ ε= +  where nε  is an error term. 

• The projection of θ  onto the data point is written as: 
, n
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• The line of possible parameters *
nθ  such that their projection onto nx  is the 

desired value ny  is orthogonal to nx : 

 
 
 
 
 
 
 
• LMS update: 

( ) ( ) ( )( )1 ,t t t
n n ny x xθ θ ρ θ+ = + −  

o converges asymptotically for 
2

0 2 / nxρ< <  to *
nθ . 

o if 
2

1/ nxρ = , the update steps directly to the solution *
nθ  in a single step. 

• Training for multiple data points  

o ( ){ }
1

,
N

n n n
x yχ

=
=  where N is the size of the training set of k dimensions. 

o If N = k and the training data is linearly independent 
� we have k linearly independent constraints on k unknowns. 
� Hence there is a unique solution *θ  where 0nn ε∀ = . 

� LMS will converge to this solution by alternating between data 
points given that the step size is small enough. 

o If N > k, there is no unique solution. 
� LMS will converge to an approximate *θ  for small steps. 
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Minimizing Error 
• Let y be a vector containing values yn and let ŷ  be a vector with components 

, nxθ :  ŷ Xθ=  

o X can be viewed as spanning a vector subspace and ŷ  lies in that subspace 

whereas, generally, y does not (hence errors nε  cannot all be 0). 

• Choosing orthogonal projection of y onto subspace spanned by X. 
o difference vector ˆy yε = −  must be orthogonal to the subspace.  That is, 

*y Xθ−  must be orthogonal to the columns of X: 

( )* 0TX y Xθ− =  

o normal equations: 
*T TX X X yθ =  

• Minimizing the least squares cost: 
o least squares cost function: 
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o gradient of ( )J θ : 

( )TJ X y Xθ θ∇ = − −  

o setting gradient to 0 and solving yields normal equations: 
*T TX X X yθ =  

• Solving Normal Equations: 
o if X is not full rank, this requires regularization. 

o if X is full rank, then ( ) 1TX X
−

 is invertible since TX X  is positive 

definite.  Thus an exact solution can be obtained: 

( ) 1* T TX X X yθ
−

=  

� Direct methods: Gaussian elimination, QR decomposition. 
� Iterative methods – converge in a finite number of steps to the 

optimal solution.  e.g. LMS updates. 
 


