Session 14

l. Announcements [5 minutes]

* Homework 6A is due 12/5... next Monday.
« Assignment 6 has the dual due dates. Get it in by thé 1o leave plenty of
time for cramming ©.

e Schedule:
11/28 Assignment 5B is due
11/29 NLP Lecture
12/1 NLP Lecture
12/6 Robotics
12/8 Philosophy

12/8 (?) Early turn-in for Assignment 6
12/12 (?) Final turn-in for Assignment 6
12/19 FINAL EXAM

Il. Review of Reinforcement Learning

Reinforcement Learning (RL) — the task of using observesivardsto learn a
(approximately) optimal policy for an environment by choosing an action that wi
maximize theexpected rewardiven the current observed state of the agent.
* Reward (Reinforcement)— feedback that differentiates betwegodandbad
outcomes; thus allowing the agent to make choices.
* Unlike MDPs, RL agents assume no prior knowledge of either the environment or
the reward function.
* Three types of agent designs:
o utility-based agent — learn a utility function for states, which the agent
will use to select actions in order to maximize expected utility.
* requires an environment model to map actions to successor states.
o Q-learning agent — learns a utility function on the state-action pairs; a so-
called Q-function.
» able to compare actions without knowing their outcomes.
= without knowing action outcome, look ahead is not possible.
o reflex agent — learns a policy that maps states to actions.

Passive Reinforcement Learning — the agent’s has a fixed policy perform
action 7T(S) in states. This is similar tgolicy iteration but we lack théransition model

T(s a s) and theeward functionR(s). Thus, the agent performs a setrifls and

uses the observed rewards to estimate the expattigdof each stateJ ”(s) . Starting
in states we want to estimate the (discounted) expectednefram future states:

U”(s):E[gy‘R(s)|m, §= %

» Direct Utility Estimation — the utility of a state is the expected rewasdtsig
from that state, so eattial is a sample for each state visited.

o In this setting, the problem becomes a supervisahing problem of
mapping state to valu® an inductive learning problem.

o This Monte-Carloapproach assumes independence of the utility ifumct
between states. This ignores the fact that esliire coupled in the
Bellman equations! Thus, this approach doednootstrap!

= Without bootstrapping, invaluable information feafning is lost
and thus the technique converges very slowly.

* Adaptive Dynamic Programming (ADP)— as the agent moves through the
environment, the transition model is estimated thedVIDP for the corresponding
model estimate is solved incrementally using dyisgrogramming.

0 Learning the environment:

= The transition modeT (s a s) is estimated from the frequency

from states to states’ via actiona.
o The MDP is solved using policy iterati@n modified policy iteration
o ADRP is intractable for large state spaces.
0 approximate ADP — bounds the number of adjustmaatsransition.
» prioritizing sweep heuristie prefers to adjust states whose
successors have recently had a large utility ajeist.

» Temporal Difference (TD) Learning— a mixture of sampling and constraint
bootstrapping in which the values of the obsentates are modified to reflect
the constraints between states given by the MDP.

o0 TD equation: given a learning ratewe update the expected utilities:

U(s) - UT(9+a(R §+yU(9- U(
The TD equations converges to the MDP equilibrimanethough only
visited states are considered — the frequencysiisvio a state are a
substitute for the explicit transition model.
o TDis an efficient approximation of ADP:
» the utility function is updated by local adjustngent
= TD only adjusts w.r.t. the observed transition anty makes a
single update per transition.

Active Reinforcement Learning — policy is no longer fixed; active agents must
decide on actions to take.
» Exploration
0 greedy agent — follows the current “optimal policy” according the
current estimates of the utility of each state.
= unlikely to converge to the “optimal policy” sinceglected states
have poor estimates of their utility functions.
o Trade-off between exploration and exploitation
» exploitation — utilizing current knowledge to perform actiohsatit
maximize rewards.
» exploration — trying suboptimal actions with the hope of
improving our current estimates for the utility afion.
o0 Greedy in the limit of infinite exploration (GLIE) — exploration
schemes that are eventually optimal.
= simple GLIE scheme — try a random action with plolts 1/t ;
otherwise, perform the optimal action.
= optimistic utility estimateshat favor unexplored states:

U (9)=R(§+ymax (T 529 v 3. 6)

e U" is the optimistic utility function
« N(a 9 is the # of times actioais done in stats.

- exploration functionf (u, n) - trade-off between greed and
curiosity that must increase inand decrease m e.g.

f(u,n):{w n< N

u otherwise

policy converges quickly while utility estimatesne@rge
slowly, but all we need is correct policy!
* Action-Value Function
o0 TD-learningcan be adapted to the active setting simply bysimg an
action based on the currdnitestimate via 1-step look-ahead. However,
we still have to learn the environment model teseactions.
0 Q-learning — learns an action-value representation insteaudildfes.
= Q-values: U(s)= mfle(a9

» model-free — does not require an environment model for leayni
or action selection.
= Bellman equations for Q-values

Qas)=R ¢+ [sajmax Qaf
= TD Q-learning (model-free)
Qa9 - (aj+al R prymax @ 4 - @A)

* TD doesn’t enforce consistency between values mgus
the model so it learns slower!

Generalization in Reinforcement Learning — we now consider methods for
scaling RL to worlds with enormous state spacdandard tabular RL is impractical
since the table has one entry per state and sinséstates would be visited rarely.
» function approximation - representing the value function in (approximaia)-
tabular forms, e.g., a linear combinatiorfedtures of the state:

U,(s)=61(9+...+8, t(9
0 Thus we want to learn the parametés..,d, to best approximate the
value function.Note features can be non-linear in the state variables.

o Function approximation allows the agent to broadly generalize between

many states via states’ common attributes.

o Unfortunately, the best utility function may be a poor estimate!

o0 Online learning update¥\idrow-Hoff or Delta Rule): uses derivatives
of squared error to update parameters.

0 - galy (9-0,(3) 2
= TDupdate: & ~ Q+0’(R(S)+y09(s)— UH(S))algge(s)
= Q g HQ+0(()+ymaxQ(a s) - agan a9

0 These updates converge to the optimal estimatentar functlons, but
can wildly diverge for non-linear ones.
* Function approximation can also be used to estithatenvironment model:
0 in observable modelshis is a supervised task.
* in partially-observablenodels, DBNs with latent variables can be used

. Supervised Learning®

Linear pattern — A pattern drawn from a set of patterns based lomear function class.

()
A A ox)
ox) ex)
(0(9)} @Xx)
o(x) W o
X ®0) a(0) @(x)
o
X ®0) @x)
X o(0)
(0(0)) ®X)
®0)

v
v

Support Vector Machines

The Maximal Margin Classifier — based on the intuition that members of bothsclas
should be as far from the classification boundarpa@ssible in order to decrease the
probability that unseen examples will be misclasdif Thus, for a desired marginwve
want a margirm(§ g = min y dx)=zy.

(linearly) separable— a characteristic of a set of points indicatingt the classes of data
in the set can be separated by a hyperplane ofimarg0. Thus, there existsnaandb

such that, for the functiog (x) = <W,(0(X)> +b, the erroré = (y— Y, 9(x))+ =0 for alli.
consistent— a classifier that classifies all of its trainisgt correctly.

Hard Margin SVM - this formulation of the SVM assumes thaf” =1. Thus,

Y, g(xi) determines how far the image of poxtis from the hyperplane. In this form,

we want to maximize this margin with the constrainat all points must have a margin at
leasty. However, by forcing this constraint, our solatis sensitive to a single outlier.

minwyb'y -y

Primal: o 0 O{L... 1}y ((woe(x) +b) = y

=1

! Notes based from books outside this class — “hévieehods for Pattern Analysis” by John Shawe-
Taylor and Nello Christianini and “An Introductiaa Probabilistic Graphical Models” by Michael Jonda

Dual:

max, W(a) :—le aa;y M’K()ﬁ X)

ij=1

st Z::lai =1 Z:zlyai =0 and OO{L...,} a=c

Optimal Parameters

=y (V)Z_lezl yd k(x.x) whereiOSV

KKT conditions: Oi0{1,...]} o [yi (<w P(x))+b)—;7 } =0
« This implies that eithea; =0 or v, (<W*,¢(xi)>+b*):y* :

« Hence only vectors with a geometric marginyof(lie closest to the
hyperplane) haver, >0 - support vectors

|
Decision Function f ([)]:sgn[Za;yjK(xj ,[)]+ 5}
=1

Convexity

A common theme in kernel methods revolves arouaddbt that our kernel is positive
semidefinite=» creating PSD kernel matrices for all training sets

PSD matrices lead to convexity in a number of (gat) optimizations of this
chapter — these problems have desirable properties.
0 Solving a quadratic programming problem with PS[kotive matrix
leads taglobal optima — a unique solution.

0 Solutions to the quadratic programming can be feffidiently (O(¢°)
with the naive methods but near linear with speadlapproaches).

Duality Gap — when the primal is a minimization, the primajemttive is always
greater than or equal to the dual objective.
Our problem satisfieStrong Duality, meaning that at the solution, there is no gap

between the primal and dual objective.
Thus, we can use the duality gap as a measurengéogence:

gap=j/— li—W(u) ye minyi:l<\7v,¢)(xi)>— ma>§/i:_1<\iv #’(Xi)>

2

Linear Regression and the LMS algorithm

» This chapter focuses on the linearity assumptiarparticular it is assumed that
each data point imposes a linear constraint opanameters.
» Convergence of the constraint satisfaction algoridppeals to geometric notions.
* How data points are presented to the learner:
0 batch setting— data are available as a block.
» ideal for situations where we are only interestethe estimate.
» batch analysis often is easier than on-line.
0 on-line setting— data arrive sequentially.
» jdeal for situations where learner must responaat-time.
= Sweeps of iterative batch algorithms can be andlgseon-line
algorithms.

Least Mean Squares (LMS) algorithm — assumes linear dependence of oneblaria
on another; namely, :<9, >g1>+£n whereg, is an error term.

* The projection offd onto the data point is written as:
o =10x)
T
+ The line of possible parametefs such that their projection ontg is the
desired valuey, is orthogonal tox,:

Xn

e LMS update:
H(t+1) - 9(‘) +p(yn —<9(t), Xn>) X,

0 converges asymptotically f@< p < 2/||>qq||2 to g .

o if p =1/||xn||2, the update steps directly to the solut#inin a single step.
* Training for multiple data points
o X :{(xn, yn)} ::1 whereN is the size of the training setlotlimensions.
o If N =kand the training data is linearly independent
» we havek linearly independent constraints banknowns.
= Hence there is a unique solutiéh whereOn & =0.

= LMS will converge to this solution by alternatingttveen data
points given that the step size is small enough.
o If N >k, there is no unique solution.

= |LMS will converge to an approximatg for small steps.

Minimizing Error
« Lety be a vector containing valugsand lety be a vector with components
(6.%,): §= X6
o X can be viewed as spanning a vector subspacey dies in that subspace
whereas, generally,does not (hence errogg cannot all be 0).

» Choosing orthogonal projection of y onto subspguansed by X.
o difference vector = y— y must be orthogonal to the subspace. That is,

y— X8 must be orthogonal to the columnsXof

XT(y-x6)=0
0 normal equations
X™Xg =X"y

* Minimizing the least squares cost:
0 least squares cost function

_1d 1 2 _ (Y= Xx6)' (y- X6)
IO) =52 =22 (%(0.%)) =
2 n=1 2 n=1 2
o gradient ofJ(6):
0,d ==X"(y- X6)
0 setting gradient to O and solving yieldgrmal equations
X™Xg =X"y
» Solving Normal Equations:
o if Xis not full rank, this requires regularization.

o if Xis full rank, then(XTX)_1 is invertible sinceX™ X is positive
definite. Thus an exact soluti@an be obtained:
g =(X"X)" Xy
» Direct methods: Gaussian elimination, QR decomuosit

» |terative methods — converge in a finite numbesteps to the
optimal solution. e.g. LMS updates.

