
Session 14

I. Announcements [5 minutes]
• Homework 6A is due 12/5… next Monday.
• Assignment 6 has the dual due dates. Get it in by the 1st to leave plenty of

time for cramming ☺.
• Schedule:

11/28 Assignment 5B is due
11/29 NLP Lecture
12/1 NLP Lecture
12/6 Robotics
12/8 Philosophy
12/8 (?) Early turn-in for Assignment 6
12/12 (?) Final turn-in for Assignment 6
12/19 FINAL EXAM

II. Review of Reinforcement Learning

Reinforcement Learning (RL) – the task of using observed rewards to learn a
(approximately) optimal policy for an environment by choosing an action that will
maximize the expected reward given the current observed state of the agent.

• Reward (Reinforcement) – feedback that differentiates between good and bad
outcomes; thus allowing the agent to make choices.

• Unlike MDPs, RL agents assume no prior knowledge of either the environment or
the reward function.

• Three types of agent designs:
o utility-based agent – learn a utility function for states, which the agent

will use to select actions in order to maximize expected utility.
� requires an environment model to map actions to successor states.

o Q-learning agent – learns a utility function on the state-action pairs; a so-
called Q-function.

� able to compare actions without knowing their outcomes.
� without knowing action outcome, look ahead is not possible.

o reflex agent – learns a policy that maps states to actions.

Passive Reinforcement Learning – the agent’s has a fixed policy π: perform
action ()sπ in state s. This is similar to policy iteration, but we lack the transition model

(), , 'T s a s and the reward function ()R s . Thus, the agent performs a set of trials and

uses the observed rewards to estimate the expected utility of each state ()U sπ . Starting

in state s we want to estimate the (discounted) expected reward from future states:

 () () 0
0

E | ,t
t

t

U s R s s sπ γ π
∞

=

 = =  ∑

• Direct Utility Estimation – the utility of a state is the expected reward starting
from that state, so each trial is a sample for each state visited.

o In this setting, the problem becomes a supervised learning problem of
mapping state to value � an inductive learning problem.

o This Monte-Carlo approach assumes independence of the utility function
between states. This ignores the fact that utilities are coupled in the
Bellman equations! Thus, this approach does not bootstrap!

� Without bootstrapping, invaluable information for learning is lost
and thus the technique converges very slowly.

• Adaptive Dynamic Programming (ADP) – as the agent moves through the
environment, the transition model is estimated and the MDP for the corresponding
model estimate is solved incrementally using dynamic programming.

o Learning the environment:
� The transition model (), , 'T s a s is estimated from the frequency

from state s to state s’ via action a.
o The MDP is solved using policy iteration or modified policy iteration.
o ADP is intractable for large state spaces.
o approximate ADP – bounds the number of adjustments per transition.

� prioritizing sweep heuristic – prefers to adjust states whose
successors have recently had a large utility adjustment.

• Temporal Difference (TD) Learning – a mixture of sampling and constraint
bootstrapping in which the values of the observed states are modified to reflect
the constraints between states given by the MDP.

o TD equation: given a learning rate α we update the expected utilities:

() () () () ()()'U s U s R s U s U sπ π π πα γ← + + −

The TD equations converges to the MDP equilibrium even though only
visited states are considered – the frequency of visits to a state are a
substitute for the explicit transition model.

o TD is an efficient approximation of ADP:
� the utility function is updated by local adjustments.
� TD only adjusts w.r.t. the observed transition and only makes a

single update per transition.

Active Reinforcement Learning – policy is no longer fixed; active agents must
decide on actions to take.

• Exploration
o greedy agent – follows the current “optimal policy” according to the

current estimates of the utility of each state.
� unlikely to converge to the “optimal policy” since neglected states

have poor estimates of their utility functions.
o Trade-off between exploration and exploitation

� exploitation – utilizing current knowledge to perform actions that
maximize rewards.

� exploration – trying suboptimal actions with the hope of
improving our current estimates for the utility function.

o Greedy in the limit of infinite exploration (GLIE) – exploration
schemes that are eventually optimal.

� simple GLIE scheme – try a random action with probability 1/ t ;
otherwise, perform the optimal action.

� optimistic utility estimates that favor unexplored states:

() () () () ()
'

max , , ' ' , ,
a

s

U s R s f T s a s U s N a sγ+ + = +   ∑

• U + is the optimistic utility function
• (),N a s is the # of times action a is done in state s.

• exploration function (),f u n - trade-off between greed and

curiosity that must increase in u and decrease in n. e.g.

(), eR n N
f u n

u otherwise

+ <
= 

• policy converges quickly while utility estimates converge
slowly, but all we need is correct policy!

• Action-Value Function
o TD-learning can be adapted to the active setting simply by choosing an

action based on the current U estimate via 1-step look-ahead. However,
we still have to learn the environment model to select actions.

o Q-learning – learns an action-value representation instead of utilities.
� Q-values: () ()max ,

a
U s Q a s=

� model-free – does not require an environment model for learning
or action selection.

� Bellman equations for Q-values:

() () () ()
'

'

, , , ' max ', '
a

s

Q a s R s T s a s Q a sγ= + ∑

� TD Q-learning: (model-free)

() () () () ()()
'

, , max ', ' ,
a

Q a s Q a s R s Q a s Q a sα γ← + + −

• TD doesn’t enforce consistency between values by using
the model so it learns slower!

Generalization in Reinforcement Learning – we now consider methods for
scaling RL to worlds with enormous state spaces. Standard tabular RL is impractical
since the table has one entry per state and since most states would be visited rarely.

• function approximation - representing the value function in (approximate) non-
tabular forms, e.g., a linear combination of features of the state:

() () ()1 1
ˆ

n nU s f s f sθ θ θ= + +…

o Thus we want to learn the parameters 1, , nθ θ… to best approximate the

value function. Note: features can be non-linear in the state variables.
o Function approximation allows the agent to broadly generalize between

many states via states’ common attributes.
o Unfortunately, the best utility function may be a poor estimate!
o Online learning updates (Widrow-Hoff or Delta Rule): uses derivatives

of squared error to update parameters.

() ()() ()ˆ
ˆ

i i j
i

U s
u s U s θ

θθ θ α
θ

∂
← + −

∂

� TD update: () () ()() ()ˆ
ˆ ˆ'i i

i

U s
R s U s U s θ

θ θθ θ α γ
θ

∂
← + + −

∂

� Q: () () ()() ()
'

ˆ ,ˆ ˆmax ', ' ,i i
a

i

Q a s
R s Q a s Q a s θ

θ θθ θ α γ
θ

∂
← + + −

∂

o These updates converge to the optimal estimate for linear functions, but
can wildly diverge for non-linear ones.

• Function approximation can also be used to estimate the environment model:
o in observable models, this is a supervised task.

• in partially-observable models, DBNs with latent variables can be used

III. Supervised Learning1

Linear pattern – A pattern drawn from a set of patterns based on a linear function class.

Support Vector Machines

The Maximal Margin Classifier – based on the intuition that members of both class
should be as far from the classification boundary as possible in order to decrease the
probability that unseen examples will be misclassified. Thus, for a desired margin γ we
want a margin () ()

1
, min i i

i
m S g y g γ

≤ ≤
= ≥xℓ .

(linearly) separable – a characteristic of a set of points indicating that the classes of data
in the set can be separated by a hyperplane of margin γ > 0. Thus, there exists a w and b

such that, for the function () (),g bφ= +x w x , the error ()() 0i i iy gξ γ
+

= − =x for all i.

consistent – a classifier that classifies all of its training set correctly.

Hard Margin SVM – this formulation of the SVM assumes that
2

1=w . Thus,

()i iy g x determines how far the image of point ix is from the hyperplane. In this form,

we want to maximize this margin with the constraint that all points must have a margin at
least γ . However, by forcing this constraint, our solution is sensitive to a single outlier.

Primal: { } ()()
, ,

2

min

1, , ,
. .

1

b

i ii l y b
s t

γ γ

φ γ

−

∀ ∈ + ≥

=

w

w x

w

…

1 Notes based from books outside this class – “Kernel Methods for Pattern Analysis” by John Shawe-
Taylor and Nello Christianini and “An Introduction to Probabilistic Graphical Models” by Michael Jordan.

x
x

x

x

x

x
x

x

x

o

x

o

o

o

o

o

o

φ(x)

φ(x) φ(x)

φ(x)

φ(x)

φ(x)
φ(x)

φ(x)

φ(x)

φ(o)

φ(x)

φ(o)

φ(o)

φ(o)

φ(o)

φ(o)

φ(o)

φ

Dual:

() ()

{ }
, 1

1 1

max ,

. . 1 0 1, , 0

l

i j i j i j
i j

l l

i i i ii i

W y y

s t y and i l

α α κ

α α α
=

= =

= −

= = ∀ ∈ ≥

∑
∑ ∑

α α x x

…

Optimal Parameters: ()* *Wγ = − α

()* *

1

l

i i ii
yα φ

=
=∑w x

() ()2* * *

1
,

l

i j j i jj
b y yγ α κ

=
= −∑ x x where i SV∈

KKT conditions : { } ()()* * * *1, , , 0i i ii l y bα φ γ ∀ ∈ + − = w x…

• This implies that either * 0iα = or ()()* * *,i iy bφ γ+ =w x .

• Hence only vectors with a geometric margin of *γ (lie closest to the

hyperplane) have * 0iα > � support vectors.

Decision Function: () ()* *

1

sgn ,
l

j j j
j

f y bα κ
=

 
⋅ = ⋅ +  ∑ x

Convexity
A common theme in kernel methods revolves around the fact that our kernel is positive
semidefinite � creating PSD kernel matrices for all training sets.

• PSD matrices lead to convexity in a number of (quadratic) optimizations of this
chapter – these problems have desirable properties.

o Solving a quadratic programming problem with PSD objective matrix
leads to global optima – a unique solution.

o Solutions to the quadratic programming can be found efficiently (()3O ℓ

with the naïve methods but near linear with specialized approaches).

Duality Gap – when the primal is a minimization, the primal objective is always
greater than or equal to the dual objective.

• Our problem satisfies Strong Duality, meaning that at the solution, there is no gap
between the primal and dual objective.

• Thus, we can use the duality gap as a measure of convergence:

 ()ˆgap Wγ= − − α
() ()1 1ˆ ˆmin , max ,

ˆ
2

i iy i y iφ φ
γ = =−−

=
w x w x

Linear Regression and the LMS algorithm
• This chapter focuses on the linearity assumption. In particular it is assumed that

each data point imposes a linear constraint on the parameters.
• Convergence of the constraint satisfaction algorithm appeals to geometric notions.
• How data points are presented to the learner:

o batch setting – data are available as a block.
� ideal for situations where we are only interested in the estimate.
� batch analysis often is easier than on-line.

o on-line setting – data arrive sequentially.
� ideal for situations where learner must respond in real-time.
� Sweeps of iterative batch algorithms can be analyzed as on-line

algorithms.

Least Mean Squares (LMS) algorithm – assumes linear dependence of one variable
on another; namely ,n n ny xθ ε= + where nε is an error term.

• The projection of θ onto the data point is written as:
, n

n n
n

x
x

x

θ
µ =

• The line of possible parameters *
nθ such that their projection onto nx is the

desired value ny is orthogonal to nx :

• LMS update:

() () ()()1 ,t t t
n n ny x xθ θ ρ θ+ = + −

o converges asymptotically for
2

0 2 / nxρ< < to *
nθ .

o if
2

1/ nxρ = , the update steps directly to the solution *
nθ in a single step.

• Training for multiple data points

o (){ }
1

,
N

n n n
x yχ

=
= where N is the size of the training set of k dimensions.

o If N = k and the training data is linearly independent
� we have k linearly independent constraints on k unknowns.
� Hence there is a unique solution *θ where 0nn ε∀ = .

� LMS will converge to this solution by alternating between data
points given that the step size is small enough.

o If N > k, there is no unique solution.
� LMS will converge to an approximate *θ for small steps.

xn

θ

µn

yn

θ∗

x1 θ∗

x2

θ

x1

x2

x3

Minimizing Error
• Let y be a vector containing values yn and let ŷ be a vector with components

, nxθ : ŷ Xθ=

o X can be viewed as spanning a vector subspace and ŷ lies in that subspace

whereas, generally, y does not (hence errors nε cannot all be 0).

• Choosing orthogonal projection of y onto subspace spanned by X.
o difference vector ˆy yε = − must be orthogonal to the subspace. That is,

*y Xθ− must be orthogonal to the columns of X:

()* 0TX y Xθ− =

o normal equations:
*T TX X X yθ =

• Minimizing the least squares cost:
o least squares cost function:

() () () ()22

1 1

1 1
,

2 2 2

TN N

n n n
n n

y X y X
J y x

θ θ
θ ε θ

= =

− −
= = − =∑ ∑

o gradient of ()J θ :

()TJ X y Xθ θ∇ = − −

o setting gradient to 0 and solving yields normal equations:
*T TX X X yθ =

• Solving Normal Equations:
o if X is not full rank, this requires regularization.

o if X is full rank, then () 1TX X
−

 is invertible since TX X is positive

definite. Thus an exact solution can be obtained:

() 1* T TX X X yθ
−

=

� Direct methods: Gaussian elimination, QR decomposition.
� Iterative methods – converge in a finite number of steps to the

optimal solution. e.g. LMS updates.

