Search

Terminology

• search tree (graph) – the path the search algorithm follows in exploring the state space via an initial state and a successor function.
 o search node – a state from the state space which has a successor function.
 A node is comprised of the following:
 1. state – the state the node represents
 2. parent – the predecessor of the node.
 3. action – the action applied to the parent to reach the node.
 4. path-cost $g(n)$ – the cost of the path from the initial state.
 5. depth – the number of search steps along the path.
 o expanding a node – generating a new set of states via the node’s successor function. A node is not checked to be terminal until it is expanded.
 o Note that several nodes in the search tree may contain the same states, generated by different paths. Hence, the search becomes a graph in state space.

• search strategy – the methodology for choosing the next node to expand.

• fringe – the collection of nodes generated but not yet expanded.
 o this collection typically imposes an ordering on which nodes in the collection will be expanded next based on a preference → queue.

Assessing Algorithms

• Performance Measures for our algorithms:
 o completeness – Is algorithm guaranteed to find an existing solution?
 o optimality – Does the algorithm find the optimal solution first?
 o time complexity – How long does it take to find a solution
 o space complexity – How much memory is needed to find a solution?

• Relevant quantities:
 o branching factor b – maximum number of successors of a node.
 o d – depth of the shallowest goal node.
 o m – maximum length of any path in the state space.

• path cost – a function used to define a numeric cost to each path.

• search cost – the cost required to find a particular solution… typically time complexity.

• total cost – a combination of search cost and path cost according to some tradeoff between the two.
Uninformed (Blind) search – search solely on the basis of being to expand the successors of a state and being able to distinguish a goal-state.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>BFS</th>
<th>Uniform</th>
<th>DFS</th>
<th>DLS</th>
<th>Iterative</th>
<th>Bidirect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes1</td>
<td>Yes1,2</td>
<td>No</td>
<td>No</td>
<td>Yes3</td>
<td>Yes1,4</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes3</td>
<td>Yes3,4</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O\left(b^{\lceil c/\varepsilon \rceil}\right)$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
<td>$O(b^{d/2})$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O\left(b^{\lceil c/\varepsilon \rceil}\right)$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
<td>$O(b^{d/2})$</td>
</tr>
</tbody>
</table>

1. complete if b is finite.
2. complete if step cost is at least $\varepsilon > 0$.
3. optimal if step costs are all identical.
4. if both directions use BFS.

- **Breadth-first Search** – all nodes at a given depth in the search tree are expanded before any of the nodes at larger depths.
 - implemented with FIFO queue
 - **complete**: if the shallowest goal node is at depth d, it will be found after searching over all shallower nodes and other nodes at depth d.
 - **optimal** if the path cost is a nondecreasing function of depth of a node.
 - **Memory requirements of breadth-first search are crippling.**
 - Every node must remain in memory $\Rightarrow O(b^{d+1})$
 - *Uniformed exponential-complexity searches only can be solved for small (trivial) instances.*

- **Uniform-cost Search** – expands the next unexpanded node with the lowest path cost.
 - implemented by a priority queue. When costs are equal, becomes BFS.
 - **complete** and **optimal** provided the cost of every step is at least $\varepsilon > 0$.
 - Let C^* be the cost of the optimal solution. Then the space and time-complexity is $O\left(b^{\lceil c/\varepsilon \rceil}\right)$.

- **Depth-first Search** – always expands the deepest node in the current fringe of the search tree (search backs-up when path unsuccessful).
 - **Incomplete** for non-finite search trees. **Always non-optimal.**
 - In worst case, DFS will end up exploring $O(b^m)$ nodes where m is the maximum depth of any node.
 - Memory requirement only $O(bm)$ where m is the maximum depth.
 - **backtracking search** – uses only $O(m)$ memory by only remembering a single successor at each level by having each node “remember” which node to generate as next unexplored successor for backtracking.
 - utilizes idea of generating a successor by modifying current state.
• **Depth-limited Search** – depth-first search with a predetermined depth limit l. Becomes DFS when $l = \infty$.
 o *incomplete* if $l < d$. *non-optimal* if $l > d$.
 o time complexity: $O(b^l)$. space complexity: $O(bl)$
 o the **diameter** of the space provides a good clue about the value to choose for l, but it is hard to discover the diameter without solving the problem.

• **Iterative Deepening Depth-first Search** – iteratively repeated depth-limited search where l is increased by 1 on each iteration from an initial value of 0. This combines the benefits of BFS and DFS.
 o *complete* when branching factor is finite.
 o *optimal* when the cost is a non-decreasing function of depth.
 o space complexity: $O(bd)$
 o **Insight**: most of the nodes are in the bottom-most level so repeating upper levels is not that bad of an idea.
 ▪ time complexity: $O(b^d)$... a factor of b better than BFS.
 o *In general, iterative deepening is the preferred method of uninformed search when there is a large search space with unknown solution depth.*
 o **iterative lengthening search** – iterative search on increasing path-costs analogous to uniform cost search.
 ▪ incurs substantial overhead compared to uniform-cost search.

• **Bidirectional Search** – simultaneous searches from the initial state forward and from the goal state backwards that stop when the 2 searches meet. Encouraged by the fact that $b^{d/2} + b^{d/2} \ll b^d$
 o *complete & optimal* (with uniform step costs) if both algorithms are BFS.
 o Checking a node for membership in the other search tree can be done in constant time via a hash table, but requires that 1 search tree be in memory.
 ▪ **Time-complexity**: $O(b^{d/2})$ **Space-complexity**: $O(b^{d/2})$
 o Bidirectional search requires that the **predecessors** of a node be efficiently computable:
 ▪ **Easy** when actions are *reversible*. Otherwise…
 o To deal with several (explicitly listed) goal states, we make them all have a successor of a single dummy goal state.
Avoiding Repeated States – avoiding repeated visits to states that have already been visited could result in substantial savings in space and time. Algorithms that forget their history are doomed to repeat it.

- repeated states are unavoidable is some problems. e.g. reversible actions.
- Repetition Detection usually requires comparing new node to those that have already been expanded.
 - Once found, one of the paths to a repeated state can be discarded.
- DFS can only avoid the exponential proliferation of non-looping paths by keeping more nodes in memory.
- Algorithms can simply remember every state that has been visited.
 - closed list – stores all expanded nodes.
 - open list – stores all nodes on the fringe.
 - In worst-case, time/space is proportional to the size of the state space.
- Optimality
 - Uniform-cost search and BFS (constant step size) are both optimal graph-search algorithms
 - Iterative-deepening needs to check if new path is better and if so, it must revise costs of all paths going through the altered state.

Searching with Partial Information

- Sensorless (Conformant) Problems – agent has no sensors.
 - agent must be able to reason about a set of possible states.
 - belief state – a set of states representing the agent’s belief of what states it might be in. In general, environment of \(S \) states has \(2^S \) belief states.
 - coercion – executing actions that cause the agent’s belief state to collapse to a certain set of states.
 - solution – coercing the belief state to a set of all goal states.
- Contingency Problems – environment is partially observable or the outcome of an agent’s actions is uncertain.
 - adversarial – uncertainty is caused by actions of other agents.
 - contingency plan - trees of decisions made based on the current set of percepts made after the last action.
 - Agent can act before finding a guaranteed plan
 - idea of acting and seeing what contingences actually arise.
 - interleaving of search and execution also useful in exploration.
- Exploration Problems – when states and actions are unknown, agent must explore.
4: Informed Search and Exploration

- **Informed Search** – uses problem-specific knowledge beyond the problem’s definition.
- **Best-First Search** – general Tree (Graph) Search where node’s are selected based on an evaluation function \(f(n) \) – cost of cheapest path to goal through node \(n \).
- **Greedy Best-First Search** – Assumes \(f(n) = h(n) \); a heuristic function.
 - susceptible to false starts
 - not optimal; incomplete.
 - Worst case time and space: \(O(b^m) \).

A* Search – \(f(n) = g(n) + h(n) \) where \(g(n) \) is the cost to reach the node \(n \) and \(h(n) \) is a heuristic function estimating the cost to a goal through \(n \) \(\rightarrow \) estimated cheapest cost through \(n \).

- A* is **optimal** if \(h(n) \) is an **admissible** (and **consistent** for Graph-Search) heuristic.
- A* is **complete**.
- If \(h(n) \) is **consistent**, the values of \(f(n) \) along any path are nondecreasing!
- A* searches on contours of cost in the state space.
 - C* is the cost of the optimal solution path
 - A* expands all nodes such that \(f(n) < C* \).
 - A* expands some nodes on the goal contour \(f(n) = C* \).
 - A* never explores nodes with \(f(n) > C* \rightarrow \text{pruned} \) – elimination of possibilities without considering them.
- A* is **optimally efficient** for any given heuristic since any algorithm that doesn’t expand a node \(n \) with \(f(n) < C* \) might miss the optimal solution.
Heuristic Functions

- **Heuristic Function** $h(n)$ – estimated cost of cheapest path to goal through node n.
- **Admissible Heuristic** – $h(n)$ never overestimates the cost to reach a goal.
- **Consistent (Monotonic) Heuristic** – $h(n)$ is not more than the cost through n to n' plus $h(n')$. Thus, a general triangle inequality:

$$h(n) \leq c(n,a,n') + h(n')$$

- **Effective Branching Factor** (b^*) – the branching factor of a uniform tree of depth d with $N+1$ nodes would have to have given that A* has generated N nodes with depth d.
- **Dominance** – a heuristic h_1 is said to dominate another heuristic h_2 if, for any node n, $h_1(n) \geq h_2(n)$.
 - A heuristic will never expand more nodes in A* than any other heuristic it dominates.
 - Every node surely expanded by search with A* under the dominant heuristic will also surely be expanded by the dominated heuristic.
- **Relaxed Problem** – a problem with fewer restrictions on the actions allowable in the problem domain.
 - The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem!
 - The “relaxed problem” heuristic must obey the triangle inequality, hence it is consistent.
 - The relaxed problem must be easily solved to be used as heuristic.
- **MultiHeuristic**: if we have a set of heuristics $\{h_i\}$ we can combine them into a single heuristic:

$$\tilde{h}(n) = \max_i \{h_i(n)\}$$

 - if $\{h_i\}$ is admissible, \tilde{h} is admissible.
 - \tilde{h} is also consistent and dominates each of its components.
- **Pattern Databases** – a database of solutions to every subproblem.
 - **Disjoint Pattern Databases** – sum of costs of two subproblems is a lower bound on the cost of solving the entire problem.
 - The solution cost of a subproblem can thus be used to form an admissible heuristic.
- **Learning Heuristics** – learn a heuristic from experience in solving problem repeatedly.
 - use inductive learning algorithm to construct a function $h(n)$ that can predict cost of other states that arise in search.
 - typically use features of a state that are relevant to its evaluation. e.g. linear combination of features.
Local Search

- **Local Search Algorithms** – When the path to reach goal is irrelevant, local search are methods for only maintaining current state and (generally) only moving to its neighbors. Often used in optimizations where the goal is to minimize a objective function.

- **Advantages:**
 1. small memory requirement
 2. reasonable solutions in large spaces

- **state space landscape** – the space of possible states defined by a “location” corresponding to state and a “elevation” corresponding to an evaluation, cost, or objective function.

- **complete local search** – always finds a goal (if any exist)

- **optimal local search** – always finds the global min/max.

- **greedy local search** – moves to “good” neighbor without considering future.

- **Hill-Climbing Search** – Always moves in “uphill” direction to maximize objective only searching amongst immediate neighbors of current state and terminating when no improvements can be made ➔ greedy.
 - Problems
 - Local Max/Min
 - Ridges
 - Plateaux
 - sideways moves – moves along “flat” objective to get off plateau.
 - **Stochastic Hill Climbing** – random uphill moves where probability of choice depends on steepness of climb.
 - **First-Choice Hill Climbing** – generate successors until one is better than “current” and take it.
 - **Random Restart Hill Climbing** – succession of hill climbs with random initial state. If probability of success is p, expected number of restarts is 1/p.
 - NP-hard problems typically have exponential number of local min/max.

- **Simulated Annealing** – Hill-Climbing with random walk thus giving efficiency and completeness.
 - Candidate move β is randomly selected. If candidate is uphill, it is always accepted. Otherwise, it is accepted with a probability exponentially decreasing with “badness” ΔE and decreasing as temperature T is lowered ➔ Boltzmann Distribution.
 \[
 P(n_{t+1} = \beta) = \min\{1, \exp\{\Delta E(\beta)/T\}\}
 \]
 - If the schedule for T cools “slowly enough”, simulated annealing finds global optimum with probability approaching 1.
• **Local Beam Search** – maintains the k “best” successor states; an approach more powerful than k independent searches since information effectively passes between the “search threads.”
 o **Stochastic Beam Search** – chooses next k states at random with a probability of a state as an increasing function of the states value. This approach helps alleviate “lack of diversity.”

• **Genetic Algorithms** – A variant of stochastic beam search in which successors are generated through combinations of 2 current states.
 o **population** – the k states maintained by the algorithm
 o **individual** – an instance in the state space.
 o **fitness function** – an evaluation function that returns higher values for better states.
 o **Essence of Algorithm**
 ▪ Parents are randomly selected with probabilities related to their fitness.
 ▪ **Crossover** points are selected randomly in accordance with the rules of the state.
 ▪ **Random Mutation** occurs in each successor with some small probability.
 o **Schema** – a substring (representing state) in which some positions of state have been left unspecified. **Instances** are strings that match a schema.
 ▪ If the average fitness of the instances of a schema is above the mean, then the number of instances of that schema within the population will grow over time.
 ▪ GA’s work best when schema correspond to meaningful components of the solution.
• Continuous Spaces
 o Gradient Descent (Ascent) – moves the current solution in the direction of the gradient in the state-space landscape.

\[\text{Gradient} \quad \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right) \]

Update - \[x \leftarrow x + \alpha \nabla f(x) \]

- Gradient is local, not global direction.
- **empirical gradient** – estimation of gradient for non-differentiable objective function by calculating \(f \) in a close neighborhood around \(x \).
- If step size \(\alpha \) is too small, too many steps are needed. If it’s too large, the steps overshoot the extrema. **Line Search** dynamically chooses \(\alpha \) in some scheme.

o Newton-Raphson Method
 - Newton’s Method for iteratively finding roots:
 \[x \leftarrow x - g(x) / g'(x) \]
 - To find min/max, we need to find roots of gradient:
 \[x \leftarrow x - H_f^{-1}(x) \nabla f(x) \]

 where \(H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} \); the **Hessian**

o Constrained Optimization – an optimization in which solutions must satisfy hard constraints for the values of each variable.
 - linear programming – constraints must be linear inequalities forming a convex region and objective function is linear.
Online Agents

- **Online Search** – agent interleaves action and computation by taking actions and observing environment to determine result of the action.
 - Online search necessary in *exploration* where states and actions are unknown.
 - Essentials:
 - Action(s) – returns actions for state s.
 - **step-cost function** $c(s,a,s')$ – determines cost of step s to s’ by way of action a.
 - Goal-Test(s) – determines if s is a goal.
 - **competitive ratio** – comparison of cost of path that agent actually travels to the cost of the path of the agent would travel if it knew the search space a priori.
 - *No algorithm can avoid dead ends in all possible search spaces* ➔ Adversarial Argument.
 - **safely explorable state space** – space in which every state can reach some goal state eventually.
 - Hill-climbing is already a local search
 - local minimum can be dealt with via *random walks*.
 - estimated cost to reach cost through neighbor s’ is the cost to get to s’ plus the estimated cost to reach the goal from there (updated):
 $$c(s,a,s') + H(s')$$
 - **optimism under uncertainty** – encourages agent to explore new paths by giving new states least possible cost.